Math 2050, HW 3, Due:23 Oct

(1) Establish the convergence or the divergence of the sequence $\{x_n\}_{n=1}^{\infty}$ where

$$x_n = \sum_{k=1}^n \frac{1}{n+k}$$

(2) Prove that the sequence $\{x_n\}_{n=1}^{\infty}$ where

$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$

is convergence using the monotone convergence Theorem.

- (3) Suppose $x_n \geq 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to +\infty} (-1)^n x_n$ exists.
- (3) Suppose x_n ≥ 0 for all n ∈ 1, and maximum (1) suppose x_n ≥ 0 for all n ∈ 1, and maximum (1).
 (4) Show that if {x_n}_{n=1}[∞] is unbounded, then there exists a subsequence {x_{n_j}}_{j=1}[∞] which is non-zero so that 1/(x_{n_j} → 0 as j → 0). $+\infty$.
- (5) Suppose every sub-sequence of $\{x_n\}_{n=1}^{\infty}$, there exists a subsequence that converges to 0, show that $\{x_n\}_{n=1}^{\infty}$ is convergent with limit 0.