Math 2050, HW 3, Due:23 Oct

(1) Establish the convergence or the divergence of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ where

$$
x_{n}=\sum_{k=1}^{n} \frac{1}{n+k}
$$

(2) Prove that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ where

$$
x_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

is convergence using the monotone convergence Theorem.
(3) Suppose $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty}(-1)^{n} x_{n}$ exists. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent.
(4) Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is unbounded, then there exists a subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ which is non-zero so that $\frac{1}{x_{n_{j}}} \rightarrow 0$ as $j \rightarrow$ $+\infty$.
(5) Suppose every sub-sequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$, there exists a subsequence that converges to 0 , show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent with limit 0 .

